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Abstract

One step in the reconstruction pipeline for creating scene
geometry from multiple camera views is the fitting of 3-D
planes to image segments. We optimize the four homoge-
neous coefficients of the equation of a plane, so that the ho-
mography it induces on a source image segment minimizes
a cost function with photoconsistency and edge consistency
terms. The photoconsistency term for a segment is defined
as the summed squared pixel color differences with all tar-
get images in which it is visible. For the edges we find a
set of subpixel-precise Canny edge points from the source
image. The edge consistency term considers all pairs of
segments which are adjacent in 3D, and sums the squared
2D distances of the appropriate Canny edge points to the
projection of the line in which the two segment planes in-
tersect. We apply the L-BFGS non-linear optimization al-
gorithm, which uses derivatives of the cost function with re-
spect to the plane equation coefficients, and we derive an-
alytic formulas for these derivatives for both terms in the
cost function. An alternate optimization method uses the
sparse Hessian matrix of second derivatives, and we com-
pute these second derivatives as well. We test these plane
optimizations on both synthetic and real image sequences.

1. Introduction

One goal in multi-image stereo analysis is to reconstruct
a geometric model of a scene. In many cases, for example,
in the urban scenes we investigate here, certain segments
can be well approximated by planar geometry. The goal of
this paper is to optimize the coefficients a, b, c, and d of the
homogeneous plane equation

ax+ by + cz + d = 0 (1)

so that the homography it induces on a source image seg-
ment minimizes a cost function defined as the summed
squared pixel color differences with all target images in
which the segment is visible. To this we add an edge con-
sistency term described in the abstract and in section 4.4.

Fua and Leclerc [6] optimize the geometry of a triangu-
lar mesh approximating an object by minimizing a cost that
depends on the position coordinates of all of the vertices
of the mesh, and on colors at a grid of texels on each tri-
angle, compared with their projections with known camera
parameters onto bilinearly interpolated target images. They
use conjugate gradient minimization, and calculate the ana-
lytic derivatives of the cost function needed by this method.
Inspired by that paper, we also use analytic derivatives of
our cost function, using C1 bicubic interpolation of the tar-
get image pixels, so that our cost function is a C1 function
of the plane equation coefficients.

Mitchell and Netravali [13] discuss the qualities of the
members of the two parameter family of symmetric 4-
segment C1 piecewise cubic filter functions that form a
“partition of unity” so that they exactly reconstruct constant
functions, and we use these reconstruction filters here. We
use the L-BFGS code of Bochkanov [2], which constructs
an approximation of the Hessian second-derivative matrix
for the cost function, using only evaluations of the cost and
its first derivatives. This works well on functions that are
only C1 rather than C2, but requires that they be smooth,
which is why we do not use bilinear interpolation. Option-
ally, we also compute the second derivatives, for use with
the STENMIN sparse-Hessian optimization method [3].

The space of 3D planes actually has only three degrees of
freedom, since the equation can be put into a three param-
eter form by dividing by any coefficient which is non-zero,
but the choice of which coefficient to divide by depends on
the equation. To avoid considering separate cases, we have
optimized over all four coefficients, and the fact that there is
always a 4D direction along which the cost function is con-
stant does not seem to cause problems in the optimization.

We work in the framework of Kim et al. [11]. We start
with Mean Shift color segmentation (Comaniciu and Meer
[5]) and exclude segments, based on their color and size,
that are likely not to be planar building surfaces, but in-
stead non-planar vegetation. We then initialize the plane
equations for the remaining segments, and proceed with the
non-linear optimization.



2. Related work

The proposed method requires initial plane coefficients,
so another planar reconstruction algorithm is needed for ini-
tialization. Kim et al. [11] have presented such an algorithm
to provide a set of planes for each segment, using a hierar-
chical search in the space of planes, parameterized by the
locations where they intersect three viewing rays. However,
it is a brute-force search by evaluating all possible planes
that place the segment within the 3D bounding box, which
requires a lot of computation time. Instead, their plane esti-
mations at finer levels can be replaced with our plane opti-
mization so that planes are quickly refined.

Another related method is Patch-Based Multi-View
Stereo (PMVS) by Furukawa and Ponce [8]. This method
gives a set of small patches (e.g. 5 × 5), each of which
represents a plane. For each patch derived from a matched
feature point, this method finds a plane that minimizes a
cost function by rotating the plane normal around two axes.

Plane Sweeping, a similar planar reconstruction ap-
proach by Gallup et al. [9], also reconstructs a set of planes
by using a set of initial feature correspondences and an
intensity-based cost evaluation.

Furukawa et al. [7] selected planes that are perpendicular
to one of the three axes of a coordinate system aligned to a
“Manhattan world” urban scene, but we want to be able to
handle slanted roofs and houses on curved suburban streets,
so we optimize over the full three degrees of freedom for a
plane, rather than the three-way choice plus one continuous
degree of freedom valid for the restricted Manhattan world.

Zhang et al. [16] also use a cost function including color
matching on image segments fit with planar surfaces, in
their disparity initialization step. They use derivatives of
this matching cost with respect to the plane equation coeffi-
cients for their non-linear optimization, but they estimate
these derivatives by cubic Hermite interpolation between
sampled finite differences, rather then by computing them
analytically as we do.

Beniham and Malis [1] show how to approximate the
Hessian matrix for a color matching term using only the
first derivatives at the identity homography and at the actual
homography. Our analytic Hessian also includes an edge
consistency term that involves the planes of two adjacent
segments, where this method may not apply.

3. Source segment regions

We currently take a segment from a single source view,
and optimize its mapping onto multiple target views. But
some segments may not be completely visible in all target
views, either because they are mapped outside the target
image frame, or due to occlusion. So we exclude target
views in which the initial plane homography maps less than
a threshold fraction t1 of the segment pixels into the target

image window. We consider source pixels to be occluded in
a target view if their color difference with the interpolated
target color at their mapped target position is greater than a
threshold t2, and similarly exclude target views where more
than a fraction t3 of the source segment pixels are occluded
in this sense. Separately for each of the remaining nt target
views, we modify the source segment as follows.

We start with the subsegment of non-occluded source
pixels, and dilate it with t4 passes of adding 4-neighbor
pixels, to close up small holes considered to be occluded
by the above color difference test, which do not come from
true occlusion. This will also add nearby pixels of contrast-
ing colors from neighboring segments, assuring that the cost
becomes positive for incorrect planes, even in the absence
of texture on the source segment, but it can make the cost
larger for the correct plane, due to cases in which the neigh-
boring segments are at different depths. For example, the
best match at a T-junction would be at an incorrect plane.

As in Fua and Leclerc [6], we assume that the initial
plane homography maps source pixels to within a few im-
age pixels of their correct positions, so that the local cost
minimum found by the optimization is likely to be near the
correct plane equation. Nevertheless, the adjustment of the
plane could move some of the source pixels outside of the
target image window. We use two methods to handle this
possibility. First, we erode the source segment away from
the inverse-mapped edges of the target image by t5 erosion
passes, to give a little wiggle room for the plane, within
which the adjusted segment still maps inside the target im-
age window. Second, we give large color values to the pix-
els outside the target image window when they are used in
the piecewise bicubic interpolation. The effect that these
large values have on the cost function and its derivatives
drives the plane equation optimization to move the mapped
pixels back inside the target image window if the plane
moves outside of the wiggle room from the first method.
But since we recompute the homographies and the eroded
sets as we iteratively adjust the plane equations, the mapped
segment is eventually allowed to move. In our current tests,
we have used t1 = 0.5, t2 = 20 (out of 255), t3 = 0.24,
t4 = 2, and t5 = 3.

4. Cost function and its derivatives

4.1. Photoconsistency cost

For a source image segment S, and a candidate plane Q
with equation (1) coefficients a, b, c, and d, our photocon-
sistency cost CSp(a, b, c, d) is defined as follows.

Let Hk(p) be the homography of a source image pixel p
induced by the planeQ from segment S in the source image
to the kth of the nt target images in which it is considered
visible, let Source(p) be the source image color at p, let Sk
be the dilated and eroded segment constructed from S as



above for target image k, and let f̃k(q) be the piecewise
bicubic color interpolation at position q in target image k.
Then our photoconsistency cost term for segment S is

CSp(a, b, c, d) =

nt∑
k=1

∑
p∈Sk

| f̃k(Hk(p))−Source(p)|2. (2)

4.2. Derivatives of the homography

Let Ps be the 3 by 4 homogeneous matrix projecting
from world coordinates (x, y, z, 1)T to homogeneous source
image coordinates (u′, v′, w′)T, so that the source image
pixel coordinates are (u, v, 1)T, with u = u′/w′ and v =
v′/w′. Then we can insert an extra third row after the first
two in this matrix, with entries from the plane equation co-
efficients (a, b, c, d) of plane Q, to give a matrix

P̂s =


p11 p12 p13 p14
p21 p22 p23 p24
a b c d
p31 p32 p33 p34

 (3)

so that P̂s · (x, y, z, 1)T = (u′, v′, 0, w′)T ≈ (u, v, 0, 1)T for
any point (x, y, z) in plane Q. By adding this fourth row to
make a square matrix, we can compute the inverse matrix
P̂−1s whenever P̂s is non-singular, which is whenever the
plane Q does not pass through the viewpoint for the source
image camera. Then P̂−1s · (u, v, 0, 1)T ≈ (x, y, z, 1)T

where (x, y, z) satisfies plane equation (1). If Pk is the 3
by 4 projection matrix for target image k, then

Ĥ = PkP̂
−1
s (4)

is a 3 by 4 matrix mapping (u, v, 0, 1)T to a point (r, s, 1)T

in the target image, constructed by projecting pixel (u, v)
back along the source camera viewing ray onto the plane
Q, and then along the target camera viewing ray onto target
image k. Thus, if P̂−1s is the 4 by 3 matrix formed from
P̂−1s by removing its third column, then H = PkP̂

−1
s is the

matrix for the homography induced by the plane Q.
To compute H , we use Cramer’s rule for the matrix in-

verse
P̂−1s = P̂ ∗s /|P̂s| (5)

where P̂ ∗s is the adjoint matrix of P̂s, the transpose of
the matrix of minor determinants, whose (i, j)th entry is
(−1)i+j times the determinant of the minor formed by re-
moving the jth row and the ith column from P̂s, and |P̂s|
denotes the determinant of P̂s. Since H is a homogeneous
matrix, it does not matter if all its entries are multiplied by a
common factor, so we disregard the determinant |P̂s| in the
denominator of equation (5).

We are interested in the dependence of H on the plane
equation coefficients a, b, c, and d. The minors for the first,
second, and fourth columns of P̂ ∗s all have one row of plane

coefficients, so their determinants are linear expressions in
a, b, c, and d, whose coefficients are the determinants of
2 by 2 minors of the 3 by 4 matrix Ps. Therefore, using
equation (4), and equation (5) without its denominator, H
can be written as a linear expression

H = Haa+Hbb+Hcc+Hdd (6)

where Ha, Hb, Hc, and Hd are 3 by 3 matrices whose en-
tries are computed from those of Ps and Pk.

Computing the target image coordinates (r, s) for the
pixel with indices (u, v) actually requires a division, since

H · (u, v, 1)T = (r′, s′, t′)T ≈ (r, s, 1)T (7)

with r = r′/t′ and s = s′/t′. Therefore we use the quotient
rule to compute

∂r

∂a
=

∂

∂a

(
r′

t′

)
=

(
∂r′

∂a
t′ − ∂t′

∂a
r′
)/

t′2 (8)

using, for example, the first row of the matrix Ha to com-
pute ∂r′/∂a for fixed u and v. Other partial derivatives of r
and s with respect to a, b, c, and d are computed similarly.

4.3. Derivatives of the bicubic interpolation

As described in section 1 above, we use the two parame-
ter family of symmetric 4-segmentC1 piecewise cubic filter
functions k(x) from equation (8) of Mitchell and Netravali
[13]. We reparameterize these functions, which in [13] have
support on the interval [-2, 2], to four cubic polynomials
gi(x) on the interval [0, 1], for i = 1, 2, 3, 4, so that when
we reconstruct a function f(r), the reconstructed function
f̃(r) for r in the interval [j, j+1] is found from the sampled
values f(n) at integer positions n by the sum

f̃(r) =

4∑
i=1

f(j − 2 + i)gi(x) = (9)

(f(j − 1), f(j), f(j + 1), f(j + 2)) ·M · (x3, x2, x, 1)T

where x = r − j and the 4 by 4 matrix M is given in terms
of the B and C parameters of [13]. For the initial experi-
ments described below, we have used B = 0 and C = 0.5,
corresponding to the Catmull-Rom interpolating spline. By
taking the derivatives g′i(x) of the polynomials gi(x) one
can form a corresponding 4 by 3 matrix N with entries
ni,l = (4− l)mi,l+1 so that the derivative f̃ ′(r) is

f̃ ′(r) =

4∑
i=1

f(j − 2 + i)g′i(x) =

(f(j − 1), f(j), f(j + 1), f(j + 2)) ·N · (x2, x, 1)T. (10)

For the piecewise bicubic reconstruction of f(r, s) from its
samples on the 2-D integer lattice, we use the tensor product



to combine these filter functions in two dimensions, getting,
for r in [j, j + 1], s in [n, n+ 1], x = r − j and y = s− n,

f̃(r, s) =

4∑
i=1

4∑
m=1

f(j−2+i, n−2+m)gi(x)gm(y). (11)

Taking the partial derivatives of this equation with respect
to the plane equation coefficients, using the product rule and
the chain rule, we get, for example,

∂f̃(r, s)

∂a
=

4∑
i=1

4∑
m=1

f(j − 2 + i, n− 2 +m)(
g′i(x)gm(y)

∂r

∂a
+ gi(x)g

′
m(y)

∂s

∂a

)
. (12)

Using the power rule, we can now compute the partial
derivatives of each term in the summations in equation (2).
Thus for a grayscale image, letting Hk(p) = (r, s),

∂|f̃k(Hk(p))− Source(p)|2

∂a

= 2
(
f̃k(Hk(p))− Source(p)

)∂f̃k(r, s)
∂a

, (13)

The partial derivatives with respect to the other coefficients
are defined similarly.

Finally the partial derivatives of CSp(a, b, c, d) in equa-
tion (2) can be found by summing the above equation over
the nt target images, over the pixels p in each modified seg-
ment segment Sk, and over the red, green, and blue color
components if the images are in color.

The second partial derivatives are computed similarly.
Note from equation (6) that H and therefore r′, s′, and t′

are linear functions of the plane equation coefficients a, b,
c, and d, so the factors ∂r′

∂a and ∂t′

∂a in equation (8) are con-
stants independent of a, b, c, and d, but the factors r′ and
t′ remain, so the quotient rule is still needed. The second
partial derivatives of the tensor product splines can be cal-
culated by the same method as for the first derivatives. The
derivative computations are done in the loop that computes
the color differences for the cost function itself, so they do
not require extra memory accesses to the images.

4.4. Edge cost

For the edge consistency cost term, we first construct a
set of edge points on the source image S, at zeros of the
second directional derivative of the filtered image intensity
in the gradient direction. These derivatives are computed
at pixel centers by finite differences, as in [12], and then
assumed to vary linearly along the horizontal and vertical
lines connecting adjacent pixel centers, so that subpixel ac-
curate edge points along these lines can be estimated. As in
[4] and [12], we first select edge points whose edge strength

(the negative of the interpolated finite difference estimates
of the third derivative of the filtered image in the gradient
direction) exceeds a strict threshold, shown as green dots
in figure 1 (top right), and then extend the edges by “hys-
teresis” to adjacent zero crossings where the edge strength
exceeds a looser threshold, shown as red dots in that figure.
We call all these zero crossings Canny edge points.

For a pair of source image segments S and T which are
adjacent in 2D, we find the set of pairs of adjacent pixels,
one in S and one in T . Then we project these pixel pairs
back into 3D onto their respective currently estimated seg-
ment planesQS andQT , and if the two 3D points are within
a distance of t6 times the distance between two diagonally
adjacent pixels backprojected onto plane QS , we say that
they are adjacent in 3D, and put them in a set A(S, T ),
shown as the black dots in figure 1 (bottom). We say that
the segments S and T are adjacent in 3D if they have at
least t7 such 3D adjacent pairs, and if the ratio of 3D ad-
jacent pairs pairs to 2D adjacent pairs is above a threshold
t8. From this 3D adjacency criterion, we build an initial seg-
ment adjacency graph where there is an edge between nodes
S and T if the two segments are adjacent in the above sense,
and thus exclude segment pairs that are adjacent in 2D only
across occlusion edges. We then modify this graph to elim-
inate adjacencies between pairs of segments whose planes
are too close to parallel to give a reliable intersection line.

Now let S be a source segment, and T be another source
segment that is connected to S by an edge in this 3D adja-
cency graph. We find the 3D intersection line L3D

ST of the
planes QS and QT of S and T , and its projection LST onto
the plane of the source image, as shown in Figure 1 (bot-
tom). We form a sub-collection KST of the Canny edge
points which are within a Manhattan distance of t9 of the
set A(S, T ), and within a 2D distance t10 of the line LST ,
as shown as larger white dots surrounding some of the black
dots in figure 1 (bottom). Note that for the vertical building
corner occlusion edge between the pink selected vertical
wall segment S and the adjacent green horizontal ground
segment T , the white dots for KST do not extend to the top
of this vertical edge, because of the distance condition to
the green line LST . For the thresholds we currently use t6
= 3, t7 = 10, t8 = .5, t9 = 1, and t10 = 1.2.

We define an edge cost term for an edge line LST as

CSTe =
∑
pεKST

d(p, LST )
2 (14)

where d(p, LST ) is the 2D perpendicular distance of the
point p to the line LST . Then the total edge cost is

Ce =
∑

S,T adjacent

CSTe (15)

and the total cost to be optimized is



Figure 1. (top-left) The small boxed section of the original image of Walnut Creek at the top left of figure 2. (top-right) Same, with Canny
edge points satisfying the strict threshold in green, and Canny edge points added by “hysteresis” in red. (bottom-left) A selected pink wall
segment surrounded by black 3D adjacent point pairs, colored 3D adjacent roof and ground segments, and the projected lines in which
their planes intersect the plane of the selected segment, shown in the adjacent segment color. (bottom-right) These projected intersection
lines after the cost for the selected segment is optimized, keeping the other segments fixed.

C =
∑
S

CSp + αCe (16)

where α is a weight which we adjust to make the two terms
have comparable values. For the scene in Figure 3, which
has large segments, we used α = 50,000.

We now describe how to compute LST and the first and
second derivatives of CST in terms of the coefficients aS ,
bS , cS , and dS , of QS and aT , bT , cT , and dT , of QT .

The family of planes (with coefficients aST , bST , cST
and dST ) passing through the 3D intersection line L3D

ST is
parameterized by a real parameter λ, with

aST = aS + λaT (17)
bST = bS + λbT (18)
cST = cS + λcT (19)
dST = dS + λdT . (20)

We solve for the parameter λ that makes this plane WST

pass through the viewpoint V = (vx, vy, vz) of the source

camera, so that aST vx+ bST vy+ cST vz+dST = 0, giving
an equation for λ:

λ = − aSvx + bSvy + cSvz + dS
aT vx + bT vy + cT vz + dT

, (21)

and therefore equations for aST , bST , cST , and dST in
terms of aS , bS , cS , dS , aT , bT , cT , and dT .

The 2D projection LST of L3D
ST onto the source image is

the intersection of the plane WST and the image plane for
the source camera. In section 4.2 we derived the matrix P̂s
which projects 3D points onto this image plane. Its third
row involves a specific plane, but we can in fact use any
plane here, since we only need the homogeneous coordi-
nates u′, v′, and w′ of (u′, v′, q′, w′)T to compute the image
pixel coordinates (u, v, 1)T, with u = u′/w′ and v = v′/w′.
We therefore revised the third row of P̂s to be simply (0, 0,
1, 0). By equation (5), the adjoint matrix P̂ ∗s is proportional
to the inverse of P̂s. According to the principles of linear al-
gebra, the inverse transpose matrix (P̂−1s )T ≈ (P̂ ∗s )

T maps
the equation for the plane WST to the equation for the cor-



responding plane in the camera viewing coordinates, so let

(r1, r2, r3, r4) = (aST , bST , cST , dST )P̂
∗
s (22)

(transposing the equation to save space on the page). This
plane passes through the origin of the viewing coordinates,
so r4 = 0, and its intersection with the image plane is the
2D projection LST of the 3D line L3D

ST , with equation

r1x+ r2y + r3 = 0. (23)

Normalizing the line normal to a unit vector, we define

(s1, s2, s3) =
1√

r21 + r22
(r1, r2, r3). (24)

Then the squared distance of a Canny edge point p =
(x, y) to the line LST is

d(p, LST )
2 = (s1x+ s2y + s3)

2. (25)

Thus the first and second derivatives ofCSTe in equation
(14) with respect to aS , bS , cS , dS , aT , bT , cT , and dT can
be readily computed using the power, quotient, and chain
rules of calculus. Note that the mixed partials like ∂2C

∂aS∂cT
are non-zero only if S = T or the segments S and T are
connected by an edge in the 3D adjacency graph, which is
what makes the Hessian matrix sparse.

5. Experiments and discussion
Performance tests To evaluate the accuracy of our algo-
rithm, we used a synthetic dataset from [10] with its ground-
truth information, and simulated camera images rendered
on an NVIDIA NVS 3100M graphics card using 16 times
multisampling per pixel. We compared results from before
and after applying our method in the hierarchical planar re-
construction framework of [11]. The photoconsistency-only
matching results obtained from our optimization procedure
when it is applied after the second pass are similar in accu-
racy to those obtained after four passes of the hierarchical
reconstruction procedure. Compared with a single brute-
force plane search through the four hierarchical levels, our
method has a speedup of approximately 8 times on average.

Aerial and outdoor scene tests We also performed tests
on several real datasets. For camera pose estimation, we
used a structure-from-motion system called “Bundler” [14].
Figure 2 shows reconstruction results of an aerial dataset
from [15]. Figure 3 shows reconstruction results of an out-
door dataset from [10]. To improve the reconstruction qual-
ity, we can iterate the optimization multiple times, as shown
in the bottom of figure 3. As the iteration proceeds, planes
are likely to converge to a global minimum of the cost func-
tion because each optimization process re-initializes the
segment visibility. The L-BFGS and STENMIN non-linear
optimization algorithms seem to perform equally well.
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Figure 2. Reconstructed aerial urban scenes of Walnut Creek, CA, USA [15]. One of five original images (top-left), and a screen shot from
the final reconstructed result (top-right). The bottom image pairs are results before and after applying our method, respectively.

Figure 3. Reconstructed outdoor scenes from a dataset [10]. One of seven original images (top-left), and a screen shot from the final
reconstructed result (top-right). The bottom images, from left to right, are results before our optimization, after optimizing 5 times, after
optimizing 10 times, and optimizing of 20 times.


